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Abstract. We explore two properties of infinite measure preserving
transformations. We examine a T that is recurrent but not 2-recurrent
which implies that T ⇥ T is not conservative. We have added a proof
that T ⇥ T 2 is also not conservative.

In addition, we introduce conditions that imply power weak mixing
property for cutting and stacking transformations with arbitrary number
of cuts and tower spacers.

1. Preliminary

In this paper, we are interested in a certain class of transformations de-
fined recursively on (X,L(X), µ) for X ⇢ R called cutting and stacking
transformations. It can be shown that cutting and stacking transforma-
tions are invertible and measure-preserving. Let X ⇢ R and (X,L(X), µ)
be a Lebesgue measure space on X. A general construction of cutting and
stacking transformations can be represented by a column, an ordered list
consisting of equal-length intervals. We always start from column C0 which
consists on one interval I0,0. Generally, we can write the nth column, Cn, as

Cn = {In,0, In,1, · · · , In,hn�1}

where each In,j is called the jth level in the column Cn and hn is the height
or the number of levels in Cn.
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Figure 1. Column Cn

The transformation is partially defined in each Cn by the implicit order
in that T map points (except in the top level) to the points directly above
it in the column structure. Note that T (In,j) = In,j+1 for j < hn � 1.
The mapping on the topmost level In,hn�1 will be defined further in higher
columns.

A construction of Cn+1 from Cn and spacers called cutting and stacking
completely specify a transformation. The column Cn+1 is formed by cutting
Cn vertically into rn subcolumns of equal length. Spacers of length equal
to that of a subcolumn can be added on top.

Figure 2. Subcolumns in Cn

Spacers are added in such a way the transformation are defined on all
points in the domain X. These subcolumns of Cn are stacked from left to
right to form Cn+1. That is, the top level of one subcolumn is mapped to
the bottom level of the subcolumn to its right. Observe that the column
Cn+1 preserves the transformation defined in Cn.

The cutting and stacking transformations are part of a more general class
of transformations called rank one. We give the definition below.
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Figure 3. Cutting and stacking

Definition 1.1. A transformation is of rank one if it can be completely
described by a sequence of columns {Cn}n�0 with the following properties.

(1) Cn+1 is a refinement of Cn. That is, a given level in Cn can be
written as a finite union of levels in Cn+1.

(2) The collection of C ⌘
S1

n=0Cn forms a su�cient semi-ring. That
is, for any given measurable set A of positive measure, for a given
✏ > 0, there exists elements H that is a finite union of elements in C
such that

µ(A4H) < ✏.

(3) In addition, the union of elements in Cn exhausts the space mod µ.
That is,

µ

2

4X\(
1[

n=1

Jn[

j=1

In,j)

3

5! 0.
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2. Non 2-Recurrent Transformation

Definition 2.1. Let (X,S, µ) be a measure space. A transformation T is
said to be recurrent if for a given set A of positive measure, there exists
a null set N ⇢ A such that for any x 2 A\N , there exists an integer
n = n(x,A) > 0 such that Tn(x) 2 A.

That is, a transformation is recurrent if almost every point in a set A
eventually evolve under the transformation back to the original set. We
note that a recurrent transformation is also equivalent to a conservative
transformation.

Definition 2.2. Let (X,S, µ) be a measure space. A transformation T is
conservative if for a given set A of positive measure, there exists an integer
n = n(A) > 0 such that

µ(T�n(A) \A) > 0.

Theorem 2.3. A measure preserving transformation T is recurrent if and
only if it is conservative.

Readers may refer to proof in [9].

A transformation T is said to be k recurrent (k > 0) if for a given set A
of positive measure, there exists an integer n > 0 such that

µ(A \ T�n(A) \ T�2n(A) . . . \ T�kn(A)) > 0.

Theorem 2.4. (Furstenberg Multiply Recurrence Theorem) A measure pre-
serving transformation T on a measure space (X,S, µ) is multiply recurrent
if for any integer k > 0, T is k recurrent.

It turns out that despite the seemingly strong restriction, any measure
preserving transformation on a finite Lebesgue measure is multiply recurrent.
This is one of the major theorems in ergodic theory. Readers may refer to
the full proof in [7].

In this chapter, we will provide an example of an infinite measure pre-
serving transformation that is conservative(recurrent) but not 2-recurrent
and therefore is not multiply recurrent. This example demonstrates the dif-
ference between finite and infinite measure space in that a transformation
T in a finite Lebesgue measure space need not be multiply recurrent.

We note that in the literature, examples of infinite measure-preserving
transformations that are not multiply recurrent are shown in [6], [1], and
[4].

2.1. Construction. We show that the cutting and stacking transformation
T defined in [2] is recurrent but not 2-recurrent. Below details the construc-
tion of transformation.

Let the first column C1 be [0, 1). We obtain column Cn+1 by cutting col-
umn Cn into rn subcolumns. Then, place (2rn�i�1)hn spacers on top of the
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Figure 4. Construction of T .

ith subcolumn, i < rn. For the last subcolumn, place rnhn+
Prn�1

i=1 (2rn�i�
1)hn = hn+1/2 spacers. Then, stack the subcolumns with spacers from left
to right. Figure 2.1 describes the construction of T . Note that the number
of levels below the last column spacers is rnhn+

Prn�1
i=1 (2rn�i� 1)hn, which

is exactly the height of the spacers.

2.2. Recurrence Property of T . We will give a proof that if rn is bounded,
then T is a conservative transformation.

Theorem 2.5. Suppose there exists a positive integer M such that rn < M ,
then the transformation T defined by the sequence rn is conservative.

Proof. Given a measurable set A, since levels form a su�cient semi ring,
there exists a level I in some column Cn such that it is 1 � 1

2M full of A.
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Then, for each subinterval I [k], k 2 {1, . . . , rn},

µ(I [k] \A) = µ(I \A)� µ(
G

j /2k

I [j] \A)

> (1� 1

2M
)µ(I)� µ(

G

j /2k

I [j])

= (1� 1

2M
)rnµ(I

[k])� (rn � 1)µ(I [k])

= (1� rn
2M

)µ(I [k])

� 1

2
µ(I [k])

That is, any subinterval is 1
2 full A. Since the distance between the µ(I [rn�1])

and µ(I [rn]) is 2hn, we have that

µ(T 2hnI \ I) � µ(I [k])

Thus, letting m = 2hn,

µ(TmA \A) � µ(TmI \ I)� 2µ(I\A)

> µ(I [k])� 2 · 1
2
µ(I [k]) = 0.

Therefore, the transformation T is conservative. ⇤
Theorem 2.6. The transformation T is not 2-recurrent.

Proof. Note that the transformation is invertible and measure-preserving;
therefore, it is equivalent to consider the forward images instead of the
preimages in the definition of k-recurrence. Let A be the top level of a
column Cn. We will show that for any integer m > 0, A\Tm(A)\T 2m(A) =
;.

Keeping the same notation, let rn be the number of subcolumns of Cn.
Let An,i where i = 1, . . . , rn denote the copy of A in the ith subcolumn Cn,i.
First, we consider the case where m  hn+1/2. Note that in this scenario,
Tm(A) is still in the column Cn as the height of the last subcolumn Cn,rn is
hn+1/2. Therefore, A can overlap with Tm(A) only when

(4.4.3.1) An,j \ TmAn,i \ T 2mAn,q 6= ;
for some q, i, j 2 {1, . . . , rn}. It is clear that by our notation, q < i < j.

We suppose for contradiction that there exists integers q, i, j such that
equation (4.4.3.1) is true. Note that the distance between the An,i and An,j ,
assuming i < j, can be shown to be

(4.4.3.2) 2rn�j ·

0

@
j�iX

p=1

2p

1

A · hn ⌘ dni,j .
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Figure 5. Top level A of column Cn.

From the supposition that An,j and Tm(An,i) intersect, we have that
m = dnj,i so that Tm(An,i) = An,j . From An,j \ T 2m(An,q) 6= ;, we also have
2m = dnj,q. Both overlaps are possible only when 2dnj,i = dnj,q. That is,

2 · dnj,i = dnj,q

2 · 2rn�j ·

0

@
j�iX

p=1

2p

1

A · hn = ·2rn�j ·

0

@
j�qX

p=1

2p

1

A · hn

2 ·

0

@
j�qX

p=1

2p +
j�iX

p=j�q+1

2p

1

A =

0

@
j�qX

p=1

2p

1

A

0

@
j�qX

p=1

2p

1

A+ 2 ·

0

@
j�iX

p=j�q+1

2p

1

A = 0(4.4.3.3)

which is a contradiction as all the terms on the left are nonzero. We conclude
that for m  hn+1/2,

(4.4.3.4) A \ Tm(A) \ T 2m(A) = ;

Next, consider the case where hn+1/2 < m  hn+2/2. In column Cn+1,
observe that this distance between the top level of copies of A and the
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Figure 6. Copies of A in column Cn+1.

bottom level of copies of A is exactly hn+1/2� hn. We will only need that
it is bounded by hn+1/2. In Cn+2, the copies of A are bands, whose width
are bounded above by hn+1/2.

Top levels are separated from top to bottom by distance 2hn+2, 4hn+2,
and so on. (as is similar to previously in column Cn+1.) Let An+1,j , An+1,i,
An+1,q be the unions of copies of A, where j, i, q 2 {1, . . . , rn+1} and j > i >
q. We call this structure a band, which implies that a copy of A in the given
subcolumn has more than one level. The distance between the top level of
band An+1,j and band An+1,i is

(4.4.3.5) dn+1
j,i = 2rn+1�j ·

�
2 + 4 + . . .+ 2j�i

�
· hn+1

The condition of m in order to have Tm(I) overlaps A is

(4.4.3.6) m 2
⇣
dn+1
j,i � hn+1/2, d

n+1
j,i + hn+1/2

⌘
.

Clearly,

(4.4.3.7) 2m 2
⇣
2dn+1

j,i � hn+1, 2d
n+1
j,i + hn+1

⌘
⌘ R2

If it is the case that A \ Tm(A) \ T 2m(A) 6= ;, the range of 2m needs to

overlap with the range R1 ⌘
⇣
dn+1
j,q � hn+1/2, d

n+1
j,q + hn+1/2

⌘
. Then, the
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relationship between dn+1
j,q and dn+1

j,i is

dn+1
j,q = 2rn�j · hn+1 ·

0

@
j�qX

p=1

2p

1

A

= 2rn�j · hn+1 · 2 ·

0

@
j�q�1X

p=0

2p

1

A

= 2rn�j · hn+1 · 2 ·

0

@1 +
j�q�1X

p=1

2p

1

A

= 2rn�j · hn+1 · 2 + 2rn�j · hn+1 · 2 ·

0

@
j�q�1X

p=1

2p

1

A

= 2rn�j · 2hn+1 + 2dn+1
j,q+1

� 2hn+1 + 2dn+1
j,i(4.4.3.8)

We may write dn+1
j,q as dn+1

j,q = 2hn+1 + 2dn+1
j,i + � where � is nonnegative by

equation 4.4.3.8.
Then,

R1 =
⇣
dn+1
j,q � hn+1/2, d

n+1
j,q + hn+1/2

⌘

=
⇣
2dn+1

j,i + 2hn+1 + � � hn+1/2, 2d
n+1
j,i + 2hn+1 + � + hn+1/2

⌘

=

✓
2dn+1

j,i +
3

2
hn+1 + �, 2dn+1

J,Q +
5

2
hn+1 + �

◆
(4.4.3.7)

It is clear that R1 does not overlap with R2. We conclude that for hn+1/2 <
m  hn+2/2,

A \ Tm(A) \ T 2m(A) = ;.
One can use induction to show that for any integer k > 0, for an integer
m such that hn+k/2 < m < hn+k+1/2, A \ Tm(A) \ T 2m(A) = ;. The
argument is similar to what is presented for the case k = 1.

⇤
2.3. Cartesian Product of T . It has been shown in [2] that if the growth
rate of rn is su�ciently large, T ⇥ T is not a conservative transformation.
We present a detailed proof below.

Theorem 2.7. If
P1

n=1
1
rn

< 1, then T ⇥ T is not conservative.

Proof. Suppose {rk} is a sequence of positive integers with each rk � 2 such
that

P1
k=1

1
rk

is finite. Then, there exists an integer n > 0 such that

1X

k=n

1

rk
< 1.
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Let A be the top level of Cn. For k � n, let Ck,l denote the lth subcolumn
of column Ck. Let Ak,l = A \ Ck,l denote copies of A in subcolumn Ck,l.
Let ⌫ = µ ⇥ µ be the product measure. For any l  rk, the measure of a
rectangle Ak,l ⇥Ak,l is

⌫ (Ak,l ⇥Ak,l) = µ(Ak,l) · µ(Ak,l) =
1

rk
µ(A) · 1

rk
µ(A).

Thus,

⌫

 
rk[

l=1

(Ak,l ⇥Ak,l)

!
= rk · ⌫(Ak,l ⇥Ak,l) =

1

rk
µ(A)2.

Define

E = (A⇥A) \
 1[

k=n

rk[

l=1

(Ak,l ⇥Ak,l)

!
.

Note that the measure of E is

⌫(E) = ⌫(A⇥A)� ⌫

 1[

k=n

rk[

l=1

(Ak,l ⇥Ak,l)

!
� µ(A)2(1�

1X

k=n

1

rk
) > 0.

We will show by induction that for any integer k � n,

(1) ⌫((T ⇥ T )iE \ E) = 0

for 1  i  hk.
For the base case (k = n), since A is a single level with Cn with spacers

of height at least hn and E ⇢ A⇥A, then

⌫[(T ⇥ T )iE \ E]  ⌫[(T ⇥ T )iA⇥A \ (A⇥A)] = 0

for all 1  i  hn.
Next, suppose that ⌫((T ⇥ T )iE \ E) = 0 is true for 1  i  hk, k > n.

We will show that (1) is true for hk < i  hk+1.
Let l be an integer and 0  l < rk. Since we place spacers of height

(2rk�l�1)hk on subcolumn Ck,l. We can see that for hk < i  (2rk�l�1)hk,
µ(T i(Ak,l)) \Ak = 0.

In addition, the number of iterations from the bottom level of subcolumn
Ck,l to reach the first spacer on the last subcolumn (Ck,rk) is

rkX

i=l

hk +
rk�1X

i=l

(2rk�i � 1)hk = (rk � l + 1)hk +
rk�1X

i=l

2rk�ihk � (rk � 1� l + 1)hk

= hk + hk

rk�1X

i=l

2rk�i

= hk + hk

✓
2rk�l

1/2
� 2rk�rk

1/2

◆

= hk + 2rk�l+1hk � 2hk

= (2rk�l+1 � 1)hk.
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Thus, µ(T iCk,l \ Ck) = 0 for (2rk�l+1 � 1)hk  i  H � hk where H the
number of spacers in the last subcolumn. We can extend this result up to
i  hk+1 as follow.

Consider the column Ck+1. For (2rk�l+1 � 1)hk  i  H � hk, we have
that T i(Ck,l) is contained in the spacers on the subcolumn Ck,rk . In Ck+1,
the spacers become full levels, with additional spacers for column Ck+1, with
height greater or equal to hk+1 on top. Therefore, if (2rk�l+1 � 1)hk  i 
hk+1, T i(Ck,l) is either in the spacers of Ck or in those of Ck+1. This implies

µ(T iCk,l \ Ck) = 0

for all i such that (2rk�l+1 � 1)hk  i  hk+1. Also, since Ak,l ⇢ Ck,l and
Ak ⇢ Ck,

µ[T iAk,l \Ak] = 0.

We conclude that if µ(T iCk,l \ Ck) > 0, then i  (2rk�l � 1)hk and i �
(2rk�l+1 � 1)hk. Define Il = {hk < i  hk+1 : µ(T iCk,l \ Ck) > 0}. Thus,

Il ⇢ ((2rk�l � 1)hk, (2
rk�l+1 � 1)hk).

Denote ((2rk�l � 1)hk, (2rk�l+1 � 1)hk) as Jl. Let m be a positive integer
distinct from l. Assume without loss of generality that m > l. We can see
that

(2rk�m+1 � 1)hk  (2rk�l � 1)hk.

Thus, the intervals Jl and Jm do not intersect which implies Il \ Im = ; for
l 6= m. Observe that

⌫[(T ⇥ T )i(Ck,l ⇥ Ck,m) \ (Ck ⇥ Ck)] = ⌫[T iCk,l ⇥ T iCk,m \ Ck ⇥ Ck]

= ⌫[(T iCk,l \ Ck)⇥ (T iCk,m \ Ck)]

= µ[T iCk,l \ Ck] · µ[T iCk,m \ Ck].

Since Il \ Im = ;, if µ[T iCk,l \ Ck] 6= 0, then µ[T iCk,m \ Ck] = 0. Thus,

⌫[(T ⇥ T )i(Ck,l ⇥ Ck,m) \ (Ck ⇥ Ck)] = 0.

Since Ak,i ⇢ Ck,i and Ak ⇢ Ck, it follows that

(2) ⌫[(T ⇥ T )i(Ak,l ⇥Ak,m) \ (A⇥A)] = 0.

Partition E into two parts as follow.

E =

0

@E \
[

l 6=m

Ak,l ⇥Ak,m

1

A t
 
E \

rk[

l=1

Ak,l ⇥Ak,l

!
⌘ E0 t E00



12 ATHIWARATKUN AND SILVA

Then,

⌫[(T ⇥ T )iE0 \ E] = ⌫[

0

@(T ⇥ T )i

0

@
[

l 6=m

Ak,l ⇥Ak,m \ E

1

A

1

A \ E]

 ⌫[

0

@(T ⇥ T )i

0

@
[

l 6=m

Ak,l ⇥Ak,m

1

A

1

A \ E]

 ⌫[

0

@
[

l 6=m

�
(T ⇥ T )iAk,l ⇥Ak,m

�
1

A \ (A⇥A)](E ⇢ A⇥A)


X

l 6=m

⌫[
�
(T ⇥ T )iAk,l ⇥Ak,m

�
\ (A⇥A)]

= 0.(From (2))

Next, to show that ⌫[(T ⇥ T )iE00 \ E] = 0, consider ⌫[E \ (Ak,l ⇥ Ak,l)].
From definition, E = A⇥A\[

S1
k=n

Srk
l=1(Ak,l ⇥Ak,l)]. This directly implies

that E \Ak,l ⇥Ak,l = ; and thus

⌫[E \Ak,l ⇥Ak,l] = 0.

Then,

⌫[(T ⇥ T )iE00 \ E] = ⌫[(T ⇥ T )i
 
E \

rk[

l=1

Ak,l ⇥Ak,l

!
\ E]


rkX

j=1

⌫[(T ⇥ T )i (E \ (Ak,l ⇥Ak,l)) \ E]

= 0.

Therefore,

⌫[(T ⇥ T )iE \ E] = ⌫[(T ⇥ T )i(E0 t E00) \ E]

= ⌫[
�
(T ⇥ T )iE t (T ⇥ T )iE00� \ E

= ⌫[(T ⇥ T )iE0 \ E t (T ⇥ T )iE00 \ E]

 0.(3)

This holds for 1  i  hk+1. By induction, (3) is true for all i 2 N. There
exists no integer i such that ⌫[(T ⇥ T )iE \ E] > 0. Hence, T ⇥ T is not
conservative.

⇤

2.4. Zero Type.

Definition 2.8. A measure preserving transformation T is of positive type
if

lim supµ(A \ T�n(A)) > 0.



ON RECURRENCE AND POWER WEAK MIXING 13

It is clear that a transformation of positive type is conservative.

Definition 2.9. A measure preserving transformation T is of zero type if

lim
n!1

µ(A \ T�n(A)) = 0

for all A 2 S with µ(A) < 1. Note that a transformation need be
neither positive type nor zero type. However, in the case of ergodic invertible
transformations in which rank one transformations satisfy, it is the case that
they are either of positive or zero type. Readers may refer to [8] for proof.

Theorem 2.10. Let (X,B(X), µ, T ) be an invertible conservative ergodic
measure preserving transformation of positive type, then T ⇥ · · ·⇥ T| {z }

d-times

is of

positive type (and hence conservative) for all d � 1. [1]

For the transformation in which we are considering, T ⇥ T is not conser-
vative and hence, by Theorem 2.10, T is not of positive type. Since T is an
ergodic invertible rank one transformation, we conclude that T must be of
zero type.

2.5. Power Cartesian Product of T . In [3], it has been shown that there
exists an infinite ergodic index transformation M that is of positive type and
therefore all cartesian products are conservative. However, M ⇥M2 is not
conservative.

We have show earlier that T is of zero type. In this section, we show that
with certain assumption of rn, T ⇥ T 2 is also not conservative.

Theorem 2.11. If
P1

n=1
1
rn

< 1, then the transformation T 2 ⇥ T is also
non-conservative.

Proof. Since the series converges, we know that there exists an integer n > 0
such that

1X

k=n

1

rk
<

1

2
.

Let A be the top level of Cn. For k � n, let Ck,l denote the lth subcolumn
of column Ck. Let Ak,l = A \ Ck,l denote copies of A in subcolumn Ck,l.
Let ⌫ = µ⇥ µ be the product measure. Define

E = (A⇥A) \
 1[

k=n

rk[

m=1

(Ak,m ⇥Ak,m�1 tAk,m ⇥Ak,m)

!
.

µ(E) � µ(A)2
 
1�

1X

k=n

2

rk

!

Note that the measure of E is positive due to our choice of n. We will show
by induction that for any integer k � n,

(1) ⌫((T 2 ⇥ T )iE \ E) = 0
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for 1  i  hk.
For the base case (k = n), since A is a top level in Cn and the spacers

have the height at least hn, the distance between An,l and An,l+1 is 2hn at
most. If 1  i < hn, then 2i < 2hn. Thus,

(2) ⌫[(T 2 ⇥ T )iE \ E]  ⌫[(T 2 ⇥ T )iA⇥A \ (A⇥A)] = 0.

Next, suppose that ⌫((T ⇥ T )iE \ E) = 0 is true for 1  i < hk, k > n.
We will show that (1) is true for hk  i < hk+1.

Let l be an integer and 0  l < rk. Note that place spacers of height
(2rk�l�1)hk on subcolumn Ck,l. We can see that for hk  i  (2rk�l�1)hk,
µ(T i(Ak,l)) \Ak = 0.

In addition, the number of iterations from the bottom level of subcolumn
Ck,l to reach the first spacer on the last subcolumn (Ck,rk) is (2

rk�l+1�1)hk.
Thus, µ(T iAk,l \ Ak) = 0 for (2rk�l+1 � 1)hk  i  H � hk where H the

number of spacers in the last subcolumn. We can extend this result up to
i  hk+1 as follow.

Consider the column Ck+1. For (2rk�l+1 � 1)hk  i  H � hk, we have
that T i(Ck,l) is contained in the spacers on the subcolumn Ck,rk . In Ck+1,
the spacers become full levels, with additional spacers for column Ck+1, with
height greater or equal to hk+1 on top. Therefore, if (2rk�l+1 � 1)hk  i 
hk+1, T i(Ck,l) is either in the spacers of Ck or in those of Ck+1. This implies

µ(T iAk,l \Ak) = 0

for all i such that (2rk�l+1 � 1)hk  i  hk+1.
We conclude that if µ(T iAk,l \ Ak) > 0, then i > (2rk�l � 1)hk and

i < (2rk�l+1�1)hk. Thus, define Il = {hk < i  hk+1 : µ(T iAk,l\Ak) > 0}.
We have

Il ⇢ ((2rk�l � 1)hk, (2
rk�l+1 � 1)hk).

Denote ((2rk�l � 1)hk, (2rk�l+1 � 1)hk) as I 0l . In addition, let Jm = {hk <
i  hk+1 : µ(T 2iAk,m \Ak,m) > 0.}. We have

Jm�1 ⇢ (
(2rk�m+1 � 1

2
hk,

2rk�m+2 � 1

2
hk) = ((2rk�m�1

2
)hk, (2

rk�m+1�1

2
)hk) ⌘ J 0

m�1

We observe that Il overlaps Jm�1 only when l = m � 1 and l = m. In
addition, from definition, we have µ(T 2iAk,m\Ak,m) > 0 only when i 2 J 0

m�1

and µ(T iAk,l \ Ak,l) > 0 only when i 2 I 0l . Thus, for l 6= m,m � 1, either
one of µ(T 2iAk,m \Ak,m) or µ(T iAk,l \Ak,l) is zero.

Since

⌫[(T 2 ⇥ T )i(Ak,m ⇥Ak,l) \ (Ak ⇥Ak)] = µ[T 2iAk,m \Ak] · µ[T iAk,l \Ak],

it follows that ⌫[(T 2 ⇥ T )i(Ak,m ⇥Ak,l) \ (Ak ⇥Ak)] = 0 for l 6= m,m� 1.
Partition E into two parts as follow.

E =

0

@E \
[

l 6=m,m�1

Ak,m ⇥Ak,l

1

At
 
E \

rk[

m=1

(Ak,m ⇥Ak,m tAk,m ⇥Ak,m�1)

!
⌘ E0tE00
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Observe that both ⌫[(T 2 ⇥ T )iE0 \ E] = 0 and ⌫[(T 2 ⇥ T )iE00 \ E] = 0.
Therefore,

⌫[(T 2 ⇥ T )iE \ E] = 0

for for 1  i  hk+1. By induction, (3) is true for all i 2 N. There exists no
integer i such that ⌫[(T 2⇥T )iE\E] > 0. Hence, T 2⇥T is not conservative.

⇤



16 ATHIWARATKUN AND SILVA

3. Power Weak Mixing

We consider a family of cutting and stacking transformations such that
the number of subcolumns formed to generate the next column is fixed.

Definition 3.1. A transformation T is called power weakly mixing if for
any positive integer r > 0 and a given sequence of integers (k1, k2, . . . , kr),
the transformation T k1 ⇥ · · ·T kr is ergodic. That is, for any sets A,B of
positive measure, there exists an integer m > 0 such that

µ(A \ (T k1 ⇥ · · ·T kr)m(B)) > 0.

3.1. Construction of a Power Weak Mixing Transformation. We
construct a class of transformations that can be shown to be power weakly
mixing given that some conditions are met.

First, start with column C0 = [0, 1). To form a column Cn+1 from Cn, cut
the column into t subcolumns where t � 3, denoted by Cn,1, . . . , Cn,t. We put
a single spacer on the last subcolumn Cn,t. We may place hn spacers(tower
spacers) on top of some subcolumns; each construction can yield di↵erent
mixing property.

Note that if there are q towers, each of which has hn spacers, the number
of subsections in Cn+1 will be t + q. Let c denote t + q. If I is a level in
column Cn, we will use the notation I [k] = I \ Cn,k to denote the copy of I
in the subcolumn Cn,k.

Figure 7. Construction of class of transformation T where
t = 4 and a tower is placed every second subcolumn Cn,1.
This transformation has been proved to be power weakly
mixing in [5].

3.2. Power Weakly Mixing Property. Let T denote the class of transfor-
mation constructed above. We present conditions that imply power weakly
mixing property of T .

Proposition 3.2. The transformation T with the following properties are
power weakly mixing:
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i.) t � 3.
ii.) Let I be a full level in column Cn. For k 2 {0, 1, . . . , c � 1}, column

Cn+1 contains at least one full level as a copy of T khn(I).
iii.) For any k 2 {1, . . . , c�1}, T khn(I) contains at least one crescent struc-

ture that occupies every level below I in the given subcolumn with
positive measure.

Let T be the transformation that satisfies all the properties in Propo-
sition 3.2. Lemma 3.3 to Theorem 3.7 outlines the proof that T is power
weakly mixing.

Lemma 3.3. Given measurable sets A,B ⇢
Qr

i=1X of positive measure
and ✏ > 0, there exists rectangles I = I1 ⇥ . . .⇥ Ir and J = J1 ⇥ . . .⇥ Jr in
a column Ck of transformation T such that for each m 2 {1, . . . , r}, Im can
be either above or below Jm and

⌫(I \A) > (1� ✏)⌫(I),

and

⌫(J \B) > (1� ✏)⌫(J).

Proof. Since a collection of rectangles form a su�cient semi-ring for the
product space, given ✏ > 0, we can choose a rectangle I 0 = I 01⇥ . . .⇥ I 0r such
that I 0 is (1� ✏

cr )-full of A. We may assume that I 0m are levels in the same
column Ck�1. In addition, we can choose J 0 = J 0

1 ⇥ . . . J 0
r such that it is

(1� ✏
cr )-full of B. We may assume that J 0

m are levels in Ck�1 as well.
Consider copies of Ck�1 in the second and the fifth sections of Ck. To

have Im above Jm, let Im be the copy of I 0m in the fifth section in Ck and let
Jm be the second copy of J 0

m in Ck. Let I = I1 ⇥ . . . Ir and J = J1 ⇥ . . . Jr.
It can be shown that I and J are (1� ✏) full of A and B respectively.

⇤

Lemma 3.4. (Double Approximation Lemma) Suppose A is a subset
of the product space

Qr
i=1X with ⌫(A) > 0. Let I = I1 ⇥ . . . ⇥ Ir be

a rectangle in Cl that is (1 � ✏)� full of A. For n > l, the number of
copies of Cl in Cn is Pn = cn where c is the number of subsections formed
performed on Ci to obtain Ci+1. Let Vn index Pn copies of Cl in Cn, and
let V = V (n, r) = Vn ⇥ . . . Vn (r times).

Then for a given �, 0 < � < 1, and for any ⌧, 0 < ⌧ < 100(1 � ✏),
there exists an integer N such that for all n > N , there is a subset V 00 of
the index set V of size at least ⌧ percent of V such that for all element
v = (v1, . . . , vr) 2 V 00, Iv is (1 � �) full of A and each Iv is of the form
Iv = I 001 ⇥ . . . I 00r where I 00m is a sublevel of Im in the vthm copy of Cl in Cn,
m 2 {1, . . . , r}.

Proof. Redefine A as A \ I. This is legitimate because we will only be
interested in I \A.
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Let t = ⌧/100. Since I is (1 � ✏) full of A, µ(I \ A) > (1 � ✏)µ(I).
Equivalently, µ(I \A) < ✏µ(I). We have that Vn = {1, . . . , Pn} and V =
{v1, . . . , vr}|vi 2 Vn}. Then, I =

S
v2V Iv.

Choose c > �+1
1�t�✏ . Pick N > l so that for any n � N , there exists V 0 a

subset of the index set V such that I 0 =
S

v2V 0 Iv satisfies

⌫(I 0\A) < �

c
⌫(I).

Thus,

⌫(I 0\I)  ⌫(A\I 0) + ⌫(I\A)

<
�

c
⌫(I) + ✏⌫(I)

=

✓
�

c
+ ✏

◆
⌫(I).

Let V 00 be a set of indices v such that Iv is (1� �)�full of A. That is,

V 00 = {v 2 V 0 | ⌫(Iv\) < �⌫(Iv)}
and set I 00 =

S
v2V 00 Iv, the union of the (1� �)�full subintervals. Then,

�⌫(I 0\I 00) = �⌫

0

@
G

v2V 0\V 00

Iv

1

A

=
X

v2V 0\V 00

�Iv


X

v2V 0\V 00

⌫(Iv\A)

= ⌫

0

@
G

v2V 0\V 00

Iv\A

1

A

 ⌫(I 0\A)

To compare the size of V 00 to V , we can consider the measure of I 00 and
I.

⌫(I\I 00)  ⌫(I 0\I 00) + ⌫(I\I 0)

 1

�
⌫(I\A) + ⌫(I\I 0)

<
1

c
⌫(I) + (

�

c
+ ✏)⌫(I)

< (1� t)⌫(I)

Hence, more then ⌧ percent of subrectangles (Iv where v 2 V 00) are (1� �)�
full of A.

⇤
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Lemma 3.5. Let I, J be levels of a column Cn, n > 0, with J below I. Let
d be the distance between I and J , that is, T dJ = I. If k 2 {0, 1, . . . , c�1},
then T khnI contains a copy of I at least in one section of Cn+1 that is at
distance d from a copy of J in Cn+1.

Furthermore, if k 6= 0,

µ(T khnI \ J) > 0

Proof. The first part is already satisfied by the definition in Proposition 3.2.
The second part is also an immediate result from 3.2(iii) because there is a
copy of T khnI that occupies every level below the level of I.

Therefore, for k 6= 0,
µ(T khnI \ J) > 0.

In fact, it can be shown that

µ(T khnI \ J) =
t� q � 1

td
µ(I) > 0.

⇤
Lemma 3.6. Let I and J be levels in column Cn, n > 0, where J is below I.
Let d denote the distance and let k be any integer such that 0 < k < (c�1)d.
Then,

µ(T khnI \ J) >
1

td+k
µ(I).

Proof. Write k in base c as

k =
k0X

j=0

kjc
j

where kj 2 {0, 1, . . . , c� 1} and k0 = blogc kc.
Notice that hn+1 = chn + 1. Then,

cjhn = cjc�1 (hn+1 � 1)

= cj�1hn+1 � cj�1

= cj�2hn+2 �
�
cj�1 + cj�2

�

= hn+j �
�
cj�1 + . . .+ c1 + c0

�

= hn+j �
1

c� 1

�
cj � 1

�

Thus,

khn =
k0X

j=0

kjc
jhn =

k0X

j=0

kjhn+j �
1

c� 1

k0X

j=0

kj(c
j � 1)

Note that

1

c� 1

k0X

j=0

kj(c
j � 1)  1

c� 1

k0X

j=0

kjc
j =

k

c� 1
< d.
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Let

a0 = kk0hn+k0 ,

a1 =
k0�1X

j=0

kjhn+j

a2 =
k0X

j=2

1

c� 1
kj
�
cj � 1

�

Then,T khn = T (a0+a1�a2)I. We first consider T a1I.

T a1I = T
Pk0�1

j=0 kjhn+jI = T
Pk0�1

j=1 kjhn+j

⇣
T k0hnI

⌘

From the first part of Lemma 3.5, T k0hnI is contains a full level in Cn+1.
Apply Lemma 3.5 repeatedly, we conclude that Ta1I is contains a full level
I 0 in Cn+k0 .

By the second part of Lemma 3.5,

t� q � 1

td
µ(I)

µ(T a0(T a1I) \ J) > µ(T a0(I 0) \ J)

=
t� q � 1

td
µ(I 0) =

t� q � 1

td
· 1

tk0
µ(I)

� 1

td+k0
µ(I) � 1

td+k
µ(I).

Finally, T�a2(T a0(T a1I)) moves the subcrescent down at most k
c�1 < d

levels. Therefore, the subcrescent of I that has been translated down at most
d levels still intersects the copy of J . The lower bound for the intersection
still holds.

⇤
Theorem 3.7. The transformation T is power weakly mixing.

Proof. We’ll show that for any r 2 Z+ and any sequence of non-zero integers
{k1, . . . , kr}, the transformation Tk1 ⇥ . . .⇥ Tkr is ergodic.

Let K = max{|ki|}. Let A,B ⇢
Qr

i=1 be measurable sets with ⌫(A) > 0
and ⌫(B) > 0. By Lemma 3.3, choose rectangles I = I1 ⇥ . . . ⇥ Ir and
J = J1 ⇥ . . .⇥ Jr such that

⌫(A \ I) >
3

4
⌫(I),

⌫(B \ J) >
3

4
⌫(J),

and Im, Jm where m 2 {1, . . . , r} are all in the same column Cl, and if
km is positive, choose Im and Jm in the higher and lower sections of Cl
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respectively, and if km is negative, choose Im and Jm in the lower and the
higher sections of Cl respectively.

We assume without loss of generality that K < c�1
c hl. Let di be the

distance between Ii and Ji for all i, and let d = max{di}. Since d > hl/c, it
follows that K < (c� 1)d. Choose � so that

0 < � <

✓
1

tK+d

◆r

By the Double Approximation Lemma, choose I 0 = I 01⇥ . . .⇥ I 0r such that I 0

are (1� �
2) full of A. Suppose that I 0m are levels in column CnI . In addition,

apply the Double Approximiation Lemma to obtain J 0 = J 0
1 ⇥ . . .⇥ J 0

r such
that J 0 are 1 � �

2 full of B. Suppose J 0
m are levels in column CnI . Let

n = max{nI , nJ}. It follows that I 0 and J 0 where I 0m, J 0
m are in column Cn

are still at least (1� �
2) full of A and B, respectively.

Since the Approximation Lemma guarantees that there are at least 75%
of copies with the properties aforementioned, we can choose a common
Cl�copy so that I 0m and J 0

m are in the same column. Hence, the distance
between I 0m and J 0

m is still dm. Let H = hn.
For all positive km, by Lemma 3.6,

µ(T kiHI 0m \ J 0
m) � 1

tki+di
µ(I 0m) � 1

tK+d
µ(I 0m)

Similarly, for all negative km, by Lemma 3.6,

µ(T kiHI 0m \ J 0
m) = µ(I 0m \ T |ki|HJ 0

m) � 1

tki+di
µ(J 0

m) � 1

tK+d
µ(I 0m)

Therefore,

⌫
⇣
(T k1 ⇥ . . .⇥ T kr)I 0 \ J 0

⌘
�
✓

1

tK+d

◆r

⌫(I 0)

Let F = T k1 ⇥ . . . ⇥ T kr . Relabel A to be A \ I and B to be B \ J , we
have

⌫
�
FHA \B

�
� ⌫(FH(I 0) \ J 0)� ⌫(FH(I)\A)� ⌫(J\B)

�
✓

1

tK+d

◆r

⌫(J 0)� �

2
⌫(I 0)� �

2
⌫(J 0) > 0

due to our choice of �. Hence, T k1 ⇥ . . . ⇥ T kr is ergodic and T is power
weakly mixing.

⇤
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